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Let V be a vector space over a field F and let W ⊂ V be any
subspace. Here is a natural way to construct an alternating form
on V such that W is isotropic with respect to this form.

Let U := V /W , identify U with a subspace of V which is
complementary to W , and let π : U →W ∗ be any linear
transformation.
Then the form

απ : V × V → F
(w1 + u1,w2 + u2) 7→ 〈π(u1),w2〉 − 〈π(u2),w1〉.

is indeed alternating, with W isotropic, that is απ|W×W = 0. More
generally, for any alternating form α′ : U ×U → F on U, the form

(w1 + u1,w2 + u2) 7→ απ(w1 + u1,w2 + u2) + α′(u1, u2)

also satisfies the above requirements.
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The following properties are easily verified:

1 W is a maximal isotropic subspace with respect to any of the
above alternating forms if and only if π is injective.

2 in case dimFW =dimFU, then none of the above forms admits
a nontrivial radical if and only if π is bijective.

In other words, for any subspace W ⊂ V with dimFW = 1
2dimFV ,

the above describes a method to construct symplectic forms on V
such that W is a Lagrangian with respect to this form.
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Conversely, let α : V × V → F be an alternating form with
W ⊂ V isotropic. Define a linear map

πα : U → W ∗

〈πα(u),w〉 := α(u,w).

Then

1 W is maximal isotropic with respect to the form α if and only
if πα is injective.

2 α is symplectic if and only if πα is bijective, in particular,
dimFW = 1

2dimFV .

The maps π 7→ απ and α 7→ πα may be considered as mutually
inverse in the sense that παπ = π, and that απα differs from α by
an alternating form which is inflated from U.
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An analog is established for forms on groups. A G -form over an
abelian group M is a map

α : G × G → M

such that ∀g ∈ G , both res|GCG (g)
α(g ,−) and res|GCG (g)

α(−, g) are

group homomorphisms from the centralizer CG (g) to M.

A subgroup H < G is isotropic with respect to a form α if
the restrictions res|GCH(h)

α(h,−) and res|GCH(h)
α(−, h) to the

homomorphisms from CH(h) to M are trivial for any h ∈ H.

A G -form α : G × G → M is symplectic if, in addition,
1 α(g , h) = −α(h, g) for every (g , h) ∈ G × G such that g and

h commute (α is alternating), and
2 res|GCG (g)

α(g ,−) = 0 if and only if g = e (α is

non-degenerate).

An isotropic subgroup H < G is a Lagrangian with respect to
a symplectic form α if it not properly contained in any
isotropic subgroup of G and |H| =

√
|G |.
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Alternating forms on groups are naturally obtained from
2-cocycles. Let c ∈ Z 2(G ,M) be a 2-cocycle with values in a
trivial G -module M. Then

αc : G × G → M
(g , h) 7→ c(h, g)− c(g , h).

is an alternating form on G , called the alternating form associated
to c . It is easy to show that if g and h commute, then αc(g , h)
depends only on the cohomology class of c , and not on the
particular representative.

From now onwards our discussion is over 2-cocycles (or over
cohomology classes) with values in the trivial G -module C∗ rather
than over arbitrary alternating G -forms.
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The non-degeneracy property for G -forms is much harder to attain.

A 2-cocycle c : G × G → C∗ is called non-degenerate if its
associated alternating form αc is symplectic.
This is the same as to say that for every x ∈ G there exists an
g ∈ CG (x) such that c(x , g) and c(g , x) are not equal.
In this regard, we say that a subgroup H < G is isotropic with
respect to c ∈ Z 2(G ,C∗) if resGH [c] = 1 ∈ H2(H,C∗).

Proposition

Let H < G be an isotropic with respect to a non-degenerate
cocycle c ∈ Z 2(G ,C∗). Then |H| divides

√
|G |.
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Groups admitting a non-degenerate 2-cocycle are termed of
central type. These are groups of square orders admitting an
irreducible projective complex representation of dimension that
equals the square root of their order.

By a deep result of R. Howlett and I. Isaacs (1982), based on the
classification of finite simple groups, it is known that all such
groups are solvable.
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We imitate the above vector space procedure in group-theoretic
terms. Assume that G admits a normal subgroup A of the same
order as that of Q := G/A (in particular G is of square order).
Certainly, Q acts on A.

In order to construct a non-degenerate 2-cocycle c ∈ Z 2(G ,C∗)
with A maximal isotropic we note the following

Proposition

Let A C G is isotropic with respect to a non-degenerate class
c ∈ Z 2(G ,C∗). Then A is necessarily abelian.

The linear transformation π : U →W ∗ is replaced now by a
1-cocycle

π : Q → Ǎ.

Here Ǎ =Hom(A,C∗) is endowed with the diagonal Q-action

〈q(χ), a〉 = χ(q−1(a)),

for every q ∈ Q, χ ∈ Ǎ and a ∈ A.
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Suppose that A admits a complement in G , that is

G = A o Q.

P. Etingof and S. Gelaki observed (2000) that any 1-cocycle
π ∈ Z 1(Q, Ǎ) gives rise to a 2-cocycle

cπ : G × G → C∗
(a1q1, a2q2) 7→ 〈π(q1), q1(a2)〉−1(= 〈π(q−11 ), a2〉)

with an associated alternating form

αcπ = 〈π(q1), q1(a2)〉 · 〈π(q2), q2(a1)〉−1, a ∈ A, q ∈ Q.

admitting A as a maximal isotropic subgroup.
Moreover, π is bijective if and only if cπ (or αcπ) is non-degenerate.
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Conversely, let c ∈ Z 2(G ,C∗) with A isotropic. Define

πc = π[c] : Q → Ǎ
〈πc(q), a〉 := αc(q, a)

∀a ∈ A,∀q ∈ Q.

Then πc is a 1-cocycle.
Furthermore, c is non-degenerate if and only if πc is bijective.
Again, we obtain the mutually inverse property in the sense that
πcπ = π, and that cπc differs from c by an alternating form inflated
from Q.
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Groups admitting bijective 1-cocycles, namely involutive
Yang-Baxter groups, are key in the study of set-theoretic
solutions of the quantum Yang-Baxter equation.

F. Cedó, E. Jespers and J. Okniński (2010)

F. Cedó, E. Jespers and Á. del Ŕıo (2010)

P. Etingof, T. Schedler and A. Soloviev (1999)

T. Gateva-Ivanova (2004)

T. Gateva-Ivanova and M. Van den Bergh (1998)

E. Jespers and J. Okniński (2005)

J.H. Lu, M. Yan and Y.C. Zhu (2000)

W. Rump (2005, 2007)
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The correspondence between symplectic G -forms with A maximal
isotropic (modulo the G -forms inflated from Q) and bijective
classes in H1(Q, Ǎ) still holds even when the quotient Q does not
embed in G as a complement of A, though is more complicated:

Theorem (N. Ben-David, G., 2009)

Let
[β] : 1→ A→ G → Q → 1, [β] ∈ H2(Q,A)

be an extension of finite groups, where A is abelian. Then there is
a 1-1 correspondence between classes [π] ∈ H1(Q, Ǎ) annihilating
the cup product with [β], that is

[β] ∪ [π] = 0 ∈ H3(Q,C∗),

and classes in ker(resGA ) mod [im(infQG )]. If, additionally,

|A| = |Q|(=
√
|G |), then in this way bijective classes correspond

to non-degenerate classes.
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and classes in ker(resGA ) mod [im(infQG )]. If, additionally,

|A| = |Q|(=
√
|G |), then in this way bijective classes correspond

to non-degenerate classes.
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When the extension [β] : 1→ A→ G → Q → 1 splits, then
certainly [β] ∪ [π] = 0 for every [π] ∈ H1(Q,A∗), and the
correspondence in the theorem amounts to the one described
above.

The theorem actually describes all groups of central type which
contain a normal Lagrangian.
Indeed, any such group can be constructed by a bijective 1-cocycle
π and a 2-cocycle β satisfying [β] ∪ [π] = 0.

Corollary

Let A be a finite abelian group, Q a finite group acting on A and
[π] ∈ H1(Q, Ǎ) a bijective class (in particular |A| = |Q|). Then for
every [β] ∈ H2(Q,A) such that [β] ∪ [π] = 0, the group G
determined by the extension [β] : 1→ A→ G → Q → 1 is of
central type.
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[π] ∈ H1(Q, Ǎ) a bijective class (in particular |A| = |Q|). Then for
every [β] ∈ H2(Q,A) such that [β] ∪ [π] = 0, the group G
determined by the extension [β] : 1→ A→ G → Q → 1 is of
central type.

Yuval Ginosar University of Haifa, Israel Maximal isotropic subgroups



An intriguing question arises following the theorem:

Question

Let [c] ∈ H2(G ,C∗) be a non-degenerate class. Does [c] admit a
normal maximal isotropic (and hence abelian) subgroup A � G of
order

√
|G |?

If a non-degenerate class [c] ∈ H2(G ,C∗) gives an affirmative
answer to this question, then by the above theorem, the
corresponding quotient G/A is an IYB group, admitting a bijective
1-cocycle datum determined by [c].
If the answer to the question is always positive, then all groups of
central type are obtained from such data.
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In a recent work with N. Ben David and E. Meir we study the
existence of large isotropic subgroups with respect to
non-degenerate classes of nilpotent groups of central type.

Nilpotent groups of central type are not necessarily obtained
from bijective data in general.

However, non-degenerate classes over nilpotent groups G ,
whose orders are free of eighth powers always admit normal
Lagrangians of order

√
|G |.

Relaxing the normality demand, we have that non-degenerate
classes over nilpotent groups G do admit a Lagrangian of
order

√
|G |.
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